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a  b  s  t  r  a  c  t

CO2 capture  and  storage  (CCS)  is  a climate-change  mitigation  technology  that  can  significantly  reduce
greenhouse  gas  emissions  in the  near  future.  To  have  a meaningful  impact,  CCS  infrastructure  will
have  to be  deployed  on a massive  scale;  in the  U.S.  this  will  require  capturing  CO2 from  hundreds
of  fossil  fuel  power  plants  and  building  a dedicated  pipeline  network  to transport  a  volume  of CO2

greater  than  domestic  oil  consumption.  In this  paper,  we analyze  the effect  of  geologic  reservoir
uncertainty  on  constructing  CCS  infrastructure—geologic  uncertainty  can impact  reservoir  cost  and
capacity  estimates  by  as  much  as  an  order  of magnitude.  This  uncertainty  propagates  through  the
capture–transport–storage  system,  influencing  decisions  including  where  and  how  much  CO2 should
be  captured.  We  demonstrate  the  effect  of geologic  uncertainty  using  a proposed  oil shale  industry
that  could  generate  tens  of  millions  of tonnes  of  CO2 each  year.  We  show  that  uncertainty  can  make
transport  and storage  costs  deviate  by  over  100%  and that  CCS  infrastructure,  particularly  the  opti-
mal  pipeline  network,  can  considerably  diverge  spatially.  Finally,  we  draw  conclusions  on how geologic
uncertainty  may  end  up  being  a driving  factor  on how  major  industries  decide  to  manage  produced
CO2.

Published  by  Elsevier  Ltd.

1. Introduction

CO2 capture and storage (CCS) is a climate-change mitigation
strategy that allows major industry to reduce CO2 emissions in the
near future, while society effectively transitions to a low carbon
economy in the longer term (Stauffer et al., 2011a).  It also allows
nations to continue to utilize existing infrastructure and resources,
such as the transmission grid and coal reserves, thus significantly
reducing CO2 emissions without precipitously restructuring the
industrial economy. This is especially important due to the large
active fleets of coal-burning power plants in major energy produc-
ing countries like the U.S. and China. Specifically, CCS technology
involves capturing and pressurizing CO2 at large industrial sources
(e.g., fossil fuel power plants, oil refineries, and cement works),
transporting the CO2 in pipelines, and injecting and storing the CO2
in geologic reservoirs (e.g., depleted oil/gas reservoirs and deep
saline formations). Once stored, the CO2 remains trapped in the
subsurface, keeping CO2 away from the atmosphere for hundreds
or thousands of years. CCS applies not only to retrofit at exist-
ing industrial CO2 sources (e.g., IEAGHG, 2011) but also apply to
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managing CO2 streams from facilities that use emerging technolo-
gies (NETL, 2010a).

For CCS to have a meaningful impact, the U.S. will have to
capture, transport, and store billions of tonnes of CO2 (GtCO2)
in the coming decades. This will require massive investment in
infrastructure, capturing CO2 from hundreds of power plants and
other industries, and simultaneously matching these CO2 sources
with suitable long-term geologic reservoirs. For the U.S. alone, this
investment would annually cost billions of dollars.

Injecting and storing CO2 currently accounts for a small pro-
portion, perhaps 10–20%, of total CCS costs. But as capture costs
come down, storage and transport costs will become increasingly
important (Stauffer et al., 2011a). Estimating the CO2 capacity and
injection costs of geologic reservoirs is a challenging and com-
plex problem. Uncertainty in these calculations means that cost
and capacity estimations can vary by as much as an order of
magnitude (Keating et al., 2011a). Capture and transport technolo-
gies, though together much more costly than storage, are much
more predictable, especially in terms of estimating CO2 volumes.
The uncertainty in CO2 storage, though, may  propagate through-
out a CCS system and end up driving how CCS infrastructure
is deployed. For example, a large utility making decisions about
how much CO2 to capture from a selection of power plants might
preferentially choose a smaller and more costly storage reservoir
with low uncertainty rather than a larger, cheaper alternative that
exposes them to the risk of not being able to store all the CO2 they

1750-5836/$ – see front matter. Published by Elsevier Ltd.
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produce. Consequently, the success of CCS may  ultimately depend
on how industry decides to manage the financial and practical risks
of storing massive amounts of CO2 in the subsurface (Esposito et al.,
2011).

The effects of uncertainty in geologic properties and processes
associated with CO2 injection and storage have been recognized
in terms of site screening (Bachu, 2003), storage capacity (IEAGHG,
2009), brine displacement and management (Buscheck et al., 2011;
Surdam et al., 2009; Yamamoto et al., 2009), and the effects of
fluid pressures on the regional hydrologic system (Birkholzer and
Zhou, 2009). In contrast to petroleum reservoirs, geologic forma-
tions investigated for use in CO2 sequestration may  have a higher
degree of uncertainty, since the same level of financial incentive
for site characterization does not exist. However, the degree of
uncertainty in sequestration site characterization can be reduced
by gleaning data from oil and gas studies in the region (Venteris and
Carter, 2009). The effects of reservoir uncertainty on CCS costs has
been investigated by McCoy and Rubin (2009),  whose study of sev-
eral injection case studies concluded that uncertainty in reservoir
geology and petrophysical properties controlled overall levelized
cost for storage.

In this paper, we demonstrate the effect of reservoir uncertainty
on deploying CCS infrastructure. We  use the example of a poten-
tial oil shale industry in Colorado that could generate 70 MtCO2/yr
while producing roughly 1.2 million barrels of oil a day (Mbbl/d)
(Keating et al., 2011a).  The regulations controlling the development
of this unconventional fossil fuel industry are likely to require that
the carbon intensity of the resulting transportation fuel is compara-
ble to that of traditional petroleum products (e.g., CRS, 2007); this
limitation will require management of CO2 emissions associated
with the generation of gigawatts of electrical power necessary for
the leading oil shale processing methods. This study expands upon
initial investigations of the effects of reservoir uncertainty on CCS
infrastructure previously introduced in Keating et al. (2011b). We
use a dynamic CO2 sequestration system model, CO2-PENS (Stauffer
et al., 2009; Viswanathan et al., 2008), to estimate the sensitivity
of reservoir cost and capacity calculations to a range of geologic
parameters (e.g., porosity, permeability, depth). Using a state-of-
the-art CCS infrastructure model, SimCCS (Middleton and Bielicki,
2009) we illustrate how uncertainty in storage costs and capacities
can drive how CO2 is transported (pipeline routes and diameters),
where CO2 is stored, and how CCS costs are impacted. Finally, we
draw general conclusions on the importance of reservoir uncer-
tainty on CCS activity—and therefore its contribution as a climate
mitigation strategy—on a national scale.

2. Background

2.1. CCS on a meaningful scale

CCS will have to be widely deployed on a massive scale to
have a meaningful impact on climate change. This will require
extensive CCS infrastructure including efficient capture technol-
ogy, the transportation of large amounts of CO2 through dedicated
pipelines, and extensive low-risk geologic reservoirs. For exam-
ple, the U.S. share of a CCS climate stabilization wedge (Pacala and
Socolow, 2004) requires CO2 abatement of up to 920 MtCO2/yr,1

representing 17% of 2009 U.S. total CO2 emissions (EIA, 2010b).
This is equivalent to the CO2 produced by 245 typical coal
power plants—in 2005, the average U.S. coal plant generated 402
megawatts of electricity (MWe)  and produced 3.76 MtCO2 (USEPA,

1 A global stabilization wedge is equivalent to the abatement of 1000 MtC/yr or
3670 MtCO2/yr, where the U.S. responsibility can be considered proportional to its
25% share of worldwide base load electricity generation.

2010). Due to the additional energy required to capture CO2, abat-
ing 920 MtCO2/yr requires managing a larger quantity of CO2. For
instance, a pulverized coal (PC) power plant representative of the
average U.S. coal plant (Simbeck and McDonald, 2001) generates
400 MWe  without capture technology, producing and emitting
3.16 MtCO2/yr. However, the same PC plant with capture technol-
ogy installed, and still generating a net 400 MWe,  would produce
3.95 MtCO2/yr. Of this, 0.40 MtCO2/yr is emitted to the atmosphere
and 3.55 MtCO2/yr is captured (assuming 90% capture efficiency).
Therefore, a 920 MtCO2/yr abatement that does not impact net
electricity production would actually require CCS infrastructure for
328 power plants and active management of 1164 MtCO2/yr. This
amount of CO2 has a pipeline-ready volume of 1.35 km3/yr (25 ◦C
and 14 MPa), equivalent to 23.3 Mbbl/d or 24% greater than the U.S.
petroleum consumption in 2009 (EIA, 2010a).

2.2. Integrated carbon management

The challenge of capturing, transporting, and storing vast
amounts of CO2 can be met  with comprehensive infrastructure
models that realistically integrate key decisions on CO2 capture
(where, how much, which technology), transport (routes, pipelines
capacities), and storage (which reservoirs, how much CO2). Such
models must incorporate the tradeoffs between scientific, indus-
trial, and policy decisions. The use of carbon-based fossil fuels has
been developed and refined over a century, guided by product
development and consumer demand; an abrupt change to non-
carbon (or reduced-carbon) energy sources over a few decades
will require integrated planning and development informed by
sophisticated analysis tools. Here, we couple an infrastructure opti-
mization model (SimCCS) to a system model for performance and
risk assessment of geologic sequestration (CO2-PENS)  to investigate
the complexities of integrating the capture, transport, and storage
system.

SimCCS is a spatial economic-engineering optimization model
for planning CCS infrastructure (Middleton and Bielicki, 2009).
Results from SimCCS can be used by stakeholders, scientists and pol-
icy makers to understand how CCS infrastructure could or should be
deployed in response to a price on carbon, minimizing infrastruc-
ture and management costs, or maximizing captured CO2. SimCCS
has been applied to a variety of carbon management scenarios
including optimizing CCS infrastructure in California given a range
of caps on CO2 emissions (Middleton and Bielicki, 2009), under-
standing how oil refinery CO2 can be used to jumpstart a CCS
industry in the U.S. Gulf states (Middleton et al., 2011a), evaluating
the cost savings of realistically networked pipelines compared with
simple direct source–sink pipelines (Kuby et al., 2011b), optimiz-
ing CCS infrastructure in response to a price or tax on CO2 (Kuby
et al., 2011a), and understanding how CCS infrastructure should
be dynamically rolled out over time (Middleton et al., 2011b).  Sim-
CCS has also been adapted to model wind energy infrastructure,
simultaneously optimizing wind-generated electricity generation,
transmission, and delivery (Phillips and Middleton, 2011).

CO2-PENS is a hybrid system model for CO2 sequestration per-
formance and risk assessment (Stauffer et al., 2009; Viswanathan
et al., 2008). The model performs probabilistic simulations of CO2
injection, migration, and leakage in geologic reservoirs and overly-
ing strata. The model samples values for each uncertain parameter
from statistical distributions, leading to estimates of global uncer-
tainty that accumulates as the coupled processes interact through
time. This study utilizes the feasibility (scoping) mode of CO2-
PENS, in which the model provides a built-in, simplified subsurface
geometry with constant geologic property values and reduced-
form models for CO2 injection and migration in the reservoir. The
injector module calculates injectivity and reservoir capacity to esti-
mate the number of injector wells and associated on-site costs
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Fig. 1. Overview of the study area. The sink geologic reservoirs are represented by
the blue circles. The oil shale industry is represented by a single source (red circle).
Landcover (national landcover data) is shown in the background. (For interpretation
of  the references to color in this figure legend, the reader is referred to the web
version of the article.)

(drilling, distribution piping). The reduced-form injector model uti-
lizes correlations from a full-physics reservoir model to calculate
pressure and CO2 saturation distributions in the reservoir through
time (Keating et al., 2011a; Stauffer et al., 2009; Viswanathan et al.,
2008).

2.3. CCS and oil shale production

The Piceance Basin in Colorado, USA, contains approximately
1.5 trillion barrels of oil in place in oil shale (Johnson et al.,
2009), six times the proven reserves of Saudi Arabia. An oil
production rate of 1.5 Mbbl/day over 50 years would require
development of only 1–2% of the basin area. Minimizing the car-
bon footprint—predominantly from electricity production—would
require transport and storage of 95–150 MtCO2/yr (Keating et al.,
2011a).

A previous study (Keating et al., 2011a)  optimized the CCS
infrastructure required to manage oil shale CO2 by coupling two
CO2-PENS (geologic reservoir simulation) and SimCCS (CCS infras-
tructure). The study identified nine geologic reservoirs (Fig. 1)
capable of storing up to 130 MtCO2/yr; CO2-PENS calculated the
capacities and injection/storage costs using its deterministic mode.
The CO2 source term represents aggregate output from power pro-
duction and gas-stripping for the basin-scale industry (Keating
et al., 2011a).  The sites vary by area (289–900 km2), target for-
mation (Castlegate or Entrada Sandstone), depth to the top of the
reservoir (average 1500–3500 m),  and distance from the oil shale
industry in the Piceance Basin. Fig. 2 illustrates a SimCCS solu-
tion for managing 50 MtCO2/yr from a potential oil-shale industry
in the Piceance Basin, Colorado, corresponding to an oil produc-
tion rate of about 800,000 bbl/day. In this scenario, a 36′′ trunk
pipeline transports all 50 MtCO2/yr produced westward towards
the nine sinks. Shortly before reaching sink #6, the trunk pipeline
splits into separate 30′′ and 24′′ pipelines, delivering 31 MtCO2/yr
to sink #6 and 19 MtCO2/yr onwards to sinks #2 and #4. After

Fig. 2. Spatial deployment of CCS infrastructure for capturing, transporting, and
storing 50 MtCO2/yr (Keating et al., 2011a). Each cylinder numbered one through
nine corresponds to the geologic sinks in Fig. 1—cylinder area is proportional to
sink capacity, height proportional to storage cost, and blue wedges represent the
amount of CO2 stored in each sink for this scenario. For comparison, sink #6 has
a  capacity of 31 MtCO2/yr and storage cost of $0.47 tCO2. The candidate network
(grey lines) shows where pipelines can be constructed between the source (red
cylinder, maximum production of 70 MtCO2/yr) and sinks. The green lines symbol-
ize  the constructed pipeline network; width is proportional to pipeline capacity.
The underlying cost surface illustrates pipeline construction and right-of-way costs
ranging from low (yellow) to high (brown). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of the article.)

Modified from Keating et al. (2011b).

delivering 7 MtCO2/yr to sink #4, a 20′′ pipeline stores the remain-
ing 12 MtCO2/yr in sink #2. Here, the model is trying to utilize the
low storage cost of sink #2 ($0.40/tCO2—Table 2) while minimiz-
ing pipeline costs. Not coincidentally, the 20′′ pipeline connecting
to sink #2 has a capacity of 12 MtCO2/yr; the SimCCS model has
minimized costs through economies of scale by maximizing the
utility of the pipeline.

2.4. Integrating reservoir uncertainty with carbon management

The previous oil shale study, summarized above and in Fig. 2,
was limited to pipeline network designs based on constant
values of reservoir capacity and onsite costs for each seques-
tration site. These constant values were the averages from 100
runs of CO2-PENS.  In this paper, we investigate the effects
of spatially uncorrelated, variable reservoir capacity and costs
among the nine sequestration sites and the resulting effect on
source–network–sink design. This uncertainty propagates through
the system and impacts how much CO2 is stored and in which sinks,
where and what capacity pipelines are constructed, and the costs
of managing the produced CO2. Because the oil shale industry is
represented by a single source producing a known quantity of CO2,
the capture process is not affected by reservoir uncertainty in this
study nor does it introduce upstream uncertainties.
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3. Reservoir uncertainty

Uncertainty in the performance of geologic sequestration reser-
voirs results from imperfect understanding of the conditions at
various scales, ranging from the shape of individual pores up to
the architecture of the reservoir. Variations in reservoir rock com-
position or texture (e.g., grain size) can produce heterogeneities
in pore structure and secondary mineralization, leading to uncer-
tainties in the distribution of permeability and effective porosity.
Likewise, geomechanical properties vary according to rock type and
secondary mineralization, and heterogeneities and lateral variation
may  produce uncertainty in the strength and state of stress of the
reservoir and caprock, as well as affect the response of the rock to
the injection of CO2 at temperatures and pressures different from
those at depth (pre-injection). For example, the injection of cooler
CO2 may  produce contraction and fracturing in the reservoir and
caprock near the injection well. At the largest scale, the reservoir’s
ability to retain CO2 within a structural trap (e.g. dome or anticline)
depends on the consistency and continuity of the low-permeability
caprock and on the shape and lateral extent of the structure. For
instance, the highest elevation of the edge of a structural dome
defines the “spill point” where trapped, buoyant CO2 may  later-
ally exit the reservoir. Lateral changes in lithology and secondary
mineralization, as well as the presence of features such as local
faults and bedding pinch-outs, can produce reservoir compartmen-
talization that may  result in reduced injection capacity. Lithologic
variations in the caprock will control the reactivity of the rock to
local CO2-rich reservoir fluids, potentially either dissolving or dehy-
drating the seal to produce leakage pathways (Damen et al., 2006).
Finally, the variation in fluid chemistry throughout the reservoir
system during the injection program may  also affect system per-
formance. Many of these physical and geochemical attributes of the
reservoir, fluid, and caprock system can be determined adequately
during site characterization through drilling, geochemical sam-
pling, borehole logging, and geologic and seismic studies. However,
due to the inherent inhomogeneity of natural systems, uncertainty
will always remain and will limit our ultimate ability to predict the
performance of geologic sequestration reservoirs.

In this study, we focus on the effects of uncertainty in bulk
permeability, porosity, and thickness of a reservoir and on the
effects of these uncertain parameters on reservoir capacity and
injectivity. Geologic formations are heterogeneous in nature, and a
property like permeability often varies over several orders of mag-
nitude within the reservoir system (e.g., Bachu and Bennion, 2008).
Detailed characterization of these heterogeneities at the scale of
interest is not possible in most cases since subsurface studies are
by nature data scarce. Sequestration sites are expected to be less
well characterized than petroleum reservoirs (since the same level
of financial incentive will not exist for CCS); moreover, the ben-
efit of data from existing oil and gas drilling programs to CO2
sequestration projects has been emphasized (Venteris and Carter,
2009). Petroleum engineering has relied on geostatistical methods
to assess the effect of heterogeneity on production calculations.
Methods such as kriging and conditional simulations (Viswanathan
et al., 2003) are used to generate multiple realizations of synthetic
reservoirs to estimate the impact of uncertainty in the system. For
CO2 injection and capacity calculations, the variability in key reser-
voir parameters can greatly impact the storage metrics of interest,
such as amount of CO2 sequestered (injected and retained) as a
function of time.

The geostatistical variability of key parameters can be treated
using multiple methods. Rigorous methods incorporate the spatial
structure of the reservoir into each synthetic reservoir realiza-
tion. Conditional simulation techniques can be used to incorporate
wellbore data into each realization, and geostatistics are used to
populate areas for which no data exist. By including reservoir

structure, the method can capture processes such as short-
circuiting. An abstraction to this method simply assigns the same
permeability to the entire reservoir for each realization but samples
the full range of permeability over all geostatistical realizations. The
intricacies of processes such as short-circuiting are not captured in
detail in this kind of abstraction; however, broad distributions of
the key parameters can be defined to capture the overall effect on
capacity and injectivity. CO2-PENS incorporates both the rigorous
and simplified approaches.

System-level models often neglect the spatial heterogeneity of
the reservoir since these models link together numerous spatial
and non-spatial processes (e.g. economics, fluid flow, and risk). Sys-
tems models require a level of abstraction to make the model both
computationally feasible and intuitive. Since numerous parame-
ters are sampled in a system-level model, numerous realizations
are required to properly sample the solution space of all the rel-
evant parameters and to calculate the uncertainty in the model
outputs. If the system model is too complex and too many parame-
ters are included, the insight that can be gained is greatly reduced,
especially for problems that involve sparse data. The system-level
model, CO2-PENS,  departs from other system models in that it can
be run in two distinct modes: a scoping mode for site screen-
ing and other data-sparse conditions (Keating et al., 2011a)  and
a performance-assessment mode for detailed site characterization
and coupling to reservoir simulators (Stauffer et al., 2011b, 2009).
The performance assessment mode accounts for the spatial het-
erogeneity of the reservoir, an important consideration once a site
has been identified and detailed characterization is required. For
this study, detailed data on the spatial structure of the various
reservoirs are not available, and we utilize the scoping mode, in
which the model provides a simplified subsurface geometry with
homogeneous geologic property values for each realization and
reduced-form models for CO2 injection and migration in the reser-
voir.

We ran two  sets of CO2-PENS realizations for each of nine seques-
tration sites in the Uinta Basin in order to calculate (1) the total
capacity (MtCO2) of each site and (2) the number of wells and
length of distribution piping required to completely fill2 the reser-
voir with CO2 within 50 years. The sparse data available on reservoir
characteristics were used to develop statistical distributions for
model inputs (Table 1). Running CO2-PENS in scoping mode, sam-
pled constant values represent homogeneous reservoir parameters
for each realization, and Latin Hypercube Sampling and Monte
Carlo methodologies ensure that the uncertainty of the combined
parameter space is sampled over the course of many model real-
izations. The uncertain reservoir input parameters in the model are
permeability, porosity, and formation thickness (Table 1). Poros-
ity and thickness exert primary control on reservoir capacity, and
permeability controls reservoir injectivity (Keating et al., 2011a).
Additional uncertainty is specified in economic input parameters,
including ranges of unit costs for drilling, distribution piping, and
maintenance (Table 1). Uncertainty in the input parameters prop-
agates throughout the model calculations and is reflected in the
results (Table 2). For example, uncertainty in reservoir thickness
and porosity is reflected in the distribution of reservoir capacity
and injection costs over 100 model realizations (Fig. 3).

2 CO2 injection is calculated assuming a simple cone-shaped injection plume in
an optimized number of injector wells. The reservoir is considered “full” when the
plumes from each well intersect. The reservoir capacity calculated in this way  is
much less (∼10%) than the total available pore volume of a rectangular block of the
reservoir formation; more sophisticated pressure management scenarios may result
in  CO2 filling a greater proportion of the absolute reservoir volume (e.g., Buscheck
et al., 2011).
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Reservoir capacity and well injectivity are calculated in CO2-
PENS using a multivariate response surface (Letellier et al., 2010)
based on a library of several thousand runs of a full-physics,
multiphase CO2-brine numerical model, FEHM (Zyvoloski, 2007;
Zyvoloski et al., 1997). Important reservoir parameters for this
response surface include permeability, pressure, thickness, domain
radius, and injection rate. Reservoir permeability exerts strong con-
trol on the injectivity, number of injector wells, and on-site costs.
We specified a log-normal distribution for Castlegate Sandstone
permeability in CO2-PENS,  and the distribution (as well as distribu-
tions of other uncertain parameters) was sampled over the course
of 100 realizations using a Monte Carlo approach. In order to inves-
tigate the effect of the statistics of the permeability distribution on
model results (i.e. costs) we  varied the mean and standard deviation
(Fig. 4). The base value for the mean is 8 × 10−15 m2 (8 milliDarcies,
mD)  with a standard deviation of 3 × 10−15 m2. As the mean per-
meability declines below 1 × 10−14 m2 (10 mD), the injectivity is
reduced and onsite costs rise rapidly (Fig. 4a and b). A wide per-
meability standard deviation (i.e. 1 × 10−14 m2) produces a wide
range in costs—from $0.05 to $6.65 per tCO2 (Fig. 4c and d). As
the standard deviation decreases below 1 × 10−15 m2, the range of
costs tightens to a minimum—$0.40 to $1.18 per tCO2; this mini-
mum  range is related to variation in other model parameters, such
as cost of drilling.

The base model values for Castlegate permeability mean and
standard deviation are located at the transition where costs begin
to rise from their steady minimum values to increase rapidly as
permeability and injectivity decline. It is apparent from Fig. 4 that
either a low reservoir mean permeability or a wide standard devi-
ation will produce a high uncertainty in on-site costs, spanning an
order of magnitude. This cost uncertainty drives uncertainty and
variability in the design of CCS infrastructure. The uncertainty in
reservoir permeability can be a function of natural variation in the
formation (aleatory uncertainty), a lack of data (epistemic uncer-
tainty), or both. The shape of the distribution may depart from
a simple normal curve due to fracture or solution pathways that
emphasize higher permeability or cementation and diagenesis that
decrease permeability. To some extent, the more information avail-
able to characterize a potential sequestration site, the lower the
epistemic uncertainty, and the better the prediction of storage costs
that can be made.

4. Infrastructure variability

The SimCCS model is parameterized by data describing the costs
and CO2 capacities to capture, transport, and store CO2. The model
can deploy CCS infrastructure in three ways: in response to a price
to emit CO2, to maximize captured CO2 within a fixed budget, or
to minimize infrastructure costs to capture a set amount of CO2
(e.g., within a cap- and trade environment). In this study, we use
SimCCS to capture a predefined amount of CO2 produced by a poten-
tial oil shale industry. Each sink is defined by the cost to inject
and store CO2 over a 50-year project length. The model is also
given a potential set of arcs or routes where pipelines could be
built (grey lines in Fig. 2); this candidate set of arcs is extracted
using the methodology described in previous studies (Middleton
and Bielicki, 2009; Middleton et al., 2012). SimCCS identifies the
optimal set of CCS infrastructure to capture and store the CO2 pro-
duced by the oil shale industry. This involves making decisions
regarding (i) which sinks should be used and (ii) how much CO2
to inject/store; (iii) which potential arcs should pipelines be con-
structed and (iv) and what diameter; (v) how much CO2 should be
transported through each pipeline; and (vi) how the CO2 should
optimally be allocated between the oil shale industry and the nine
sinks. All these decisions are highly interdependent and so they
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Table  2
Summary of results of 100 CO2-PENS realizations for each of the nine sinks. Injection-storage costs include (i) distribution pipeline costs as described in Keating et al. (2011a),
(ii)  well maintenance costs ($15000/well/year), and (iii) pipe failure repair costs (mean is $50000/event, standard deviation is $20000/event).

Sink ID Injection capacitya (MtCO2/yr) Costa,b ($/tCO2)

Mean Std. dev. Min Max Mean Std. dev. Min  Max

1 16.3 4.8 5.6 28.8 0.69 0.27 0.17 1.80
2  14.4 4.3 4.9 25.5 0.40 0.16 0.11 1.05
3 13.0  4.0 4.4 22.9 0.55 0.22 0.15 1.44
4  12.0 3.6 4.1 22.2 0.70 0.27 0.17 1.81
5 10.9  3.2 3.7 19.3 1.20 0.47 0.28 3.11
6  31.0 7.9 9.2 49.7 0.47 0.18 0.11 1.08
7  13.5 3.5 4.0 21.8 0.71 0.27 0.16 1.59
8  7.1 1.8 2.1 11.5 0.85 0.32 0.20 1.91
9 12.4  3.2 3.7 19.9 1.21 0.46 0.27 2.73

Total 130.6 Avg. 0.70

a Injection capacity and cost values are based on CO2-PENS modeling results reported in Keating et al. (2011a).
b On-site costs include costs for drilling new injector wells, refurbishing existing wells for use as injectors, and distribution piping to the wellheads.

have to be considered simultaneously. Typically, SimCCS optimizes
two additional decisions; whether sources should capture CO2 and
how much. However, these two decisions are predetermined in this
present study since a single source represents the oil shale industry
in the Piceance basin.

In order to investigate the impact of reservoir uncertainty on
CCS infrastructure, we execute the SimCCS model 100 separate
times for 14 different carbon management scenarios ranging from
5 to 70 MtCO2/yr (80,000 to 1.1 Mbbl/d). Each of these 1400 Sim-
CCS runs randomly selects a linked cost and capacity from the 100
CO2-PENS realizations for each of the nine sinks; there is no spatial
correlation between the nine reservoirs. Consequently, each carbon
management scenario has 100 solutions that can differ in terms of
the cost to transport and store CO2, which sinks and pipelines are
constructed, and how the CO2 flows between the source and sinks.

Straightforwardly, sink costs will directly influence the total car-
bon management cost—for example, uniformly high sink costs will
drive up total CCS costs. Sink capacities also impact costs; the model
has to balance the search for lower costs with a need for identifying

the desired total CO2 storage capacity. For instance, a reduction in
the capacity of cheaper sinks can have an effect similar to increasing
the average storage cost for all nine sinks. Changes in sink capac-
ity also cause the model to look for different pipeline solutions to
transport all of the captured CO2. Consequently, variations in the
costs and capacities of the sinks, such as those calculated with CO2-
PENS, will potentially change both the costs and spatial deployment
of all CCS infrastructure.

4.1. Spatial variability

Every infrastructure solution generated by SimCCS in this study
is unique. That is, each of the 100 solutions for the 14 man-
agement scenarios differ in terms of total cost, amount of CO2
stored in each sink (if any), pipeline routes and capacities, and/or
CO2 flows between the source and sinks. There is a high level
of variety in solutions; for example, the 100 SimCCS runs in the
70 MtCO2/yr carbon management scenario produced 35 unique
combinations of the nine sinks to meet the 70 MtCO2/yr target. Fig. 4

Fig. 3. Complementary cumulative distribution functions (CCDFs) for input (blue) and output (red) parameters reflect 100 CO2-PENS model realizations of sequestration site
#1.  Reservoir porosity (a) is one parameter that controls calculated reservoir capacity (b), and permeability (c) determines numbers of injector wells and the majority of
onsite  costs (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)



Author's personal copy

138 R.S. Middleton et al. / International Journal of Greenhouse Gas Control 8 (2012) 132–142

Fig. 4. Variation in on-site cost ($/tCO2) with changes in the permeability distribution (m2). (A, B) Mean permeability varies over several orders of magnitude, with standard
deviation equal to 0.375 times the mean. (C, D) Variation in standard deviation, with mean equal to 8 × 10−15 m2. Each model run (colors) consists of 100 realizations sampled
from  the distribution by CO2-PENS using a Monte Carlo method. Model base values for Castlegate Sandstone are log-normal with mean 8 × 10−15 m2 and standard deviation
3  × 10−15 m2, shown in red symbols. The base model values are located at the transition from flat to rapid increase in costs vs. permeability. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of the article.)

illustrates representative solutions for the six most common com-
binations, accounting for over half of the 100 realizations. Fig. 4a,
for instance, illustrates a set of four sinks (#2–3–4–6) that appear
in 16 SimCCS solutions. Even though each of these 16 realizations
use the same set of sinks, the amount of CO2 stored in each sink
CO2 (blue wedges), the pipeline capacities (arc widths), and the
pipeline routes vary widely between solutions. The model adapts
the pipeline capacities, pipeline routes, and CO2 flows in order to
maximize economies of scale in transportation (i.e., fully utilized
pipelines have lower unit costs) and deliver as much CO2 as possible
to the cheapest sinks.

There are also many commonalities that can be identified across
the different solutions. For example, the combination of sinks
#2–3–6 is present in 72 of the 100 different solutions. This suggests
that these three sinks could form a robust core for any infrastructure
solution, providing the type of low-risk solution that would satisfy
a utility’s goal of safely disposing their CO2 emissions. This three-
sink combination occurs so frequently because they simultaneously
offer three distinct advantages: they have a large cumulative capac-
ity (∼58.4 MtCO2/yr on average), they offer relatively low-cost cost
storage (sinks #2 and 6 are the two cheapest sinks), and they are
spatially proximal to each other which minimizes pipeline con-
nection lengths. In contrast, the combination of sinks shown in
Fig. 5b (sinks #1–2–3–6) is markedly different from the other five
frequently selected sink combinations. For example, because sink
#1 is utilized but without sink #4 being present, the major trunk-
line leaving the source trends northwest (as opposed to westward).
In these realizations, sink #1 has a cost significantly below its
average for the 100 CO2-PENS results (see Table 2). Because the
results shown in Fig. 5b appear to be an outlier, it is likely that this

combination of sinks and pipeline routes/capacities is not a robust
solution for capturing and storing CO2.

Studying the 100 SimCCS solutions in aggregate further reveals
which sinks and pipelines are likely to provide a robust solution
for safely disposing CO2. For example, sink #6 appears in 98 of 100
SimCCS solutions for the 70 MtCO2/yr scenario (Fig. 6). This is not
unexpected since sink #6 is, on average, the largest (31 MtCO2/yr)
and second cheapest sink ($0.47 tCO2) in the dataset. Subsequently,
the SimCCS model is always likely to utilize this low-cost abundant-
capacity (Fig. 6). Conversely, sink #9 is selected in just one SimCCS
solution; sink #9 is an expensive sink and, because it is spatially
dislocated from cheaper and larger sinks, it requires an extensive
set of pipelines to be reached. The number of times pipelines are
constructed, and with what capacity, also suggests which pipelines
provide a reliable network for managing CO2. For instance, the large
red pipelines in Fig. 6 are likely to form a strong backbone to any
pipeline network regardless of sink uncertainty.

4.2. Cost variability

SimCCS deploys infrastructure in a cost-minimization frame-
work in order to satisfy a CO2 cap or target, stay within a carbon
price, or satisfy and economic budget. The spatial infrastructure
changes highlighted above are driven by the model striving to mini-
mize costs while remaining within other constraints. Consequently,
the CCS infrastructure costs within each carbon management sce-
nario fluctuate with sink uncertainty. Fig. 7 highlights how costs
(total, transport, and storage) vary with both increasing CO2 tar-
gets and uncertainty. As the CO2 target is increased from 5 to
70 MtCO2/yr, total infrastructure costs rise—managing more CO2
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Fig. 5. Six most frequent combination of sinks for the 70 MtCO2/yr scenario, ranging from most (a) to least common (f). Each of the six subfigures displays a representative
solution for each unique set of sinks.

Modified from Keating et al. (2011b).

requires more pipelines and more injection wells in more sinks.
However, the unit costs have a more complex relationship with CO2
amounts. In short, as the CO2 target rises towards 70 MtCO2/yr, the
average pipeline costs decrease through economies of scale, and the
average storage costs slightly rise as more expensive sinks are uti-
lized. For example, the 100 runs for the 5 MtCO2/yr target typically
require a single 16′′ pipeline joining the single source to sink #6;
this pipeline costs $6.0 M/yr to construct and operate, equivalent to
$1.2/tCO2. The 100 model runs for the 30 MtCO2/yr target also often
build a 30′′ pipeline using the same route at a cost of $10.9 M/yr,
amounting to $0.36 tCO2/yr. This reduction in costs ($1.2/tCO2 com-
pared with $0.36/tCO2) is achieved through economies of scale:
ROW costs are almost impervious to pipeline capacity, and fully
utilizing a larger pipeline is always cheaper than constructing a
smaller pipeline. Beyond 30 MtCO2/yr, pipeline costs flatten out
since the vast majority of the pipeline network operates at close
to full utilization (see the solid line in Fig. 7c). Generally, average

transport costs in this study are lower than for other studies due to
the close proximity of the nine sinks and the ready access to fed-
eral and other low-cost land with few geographical impedances. For
instance, there is an almost entire lack of paved roads and urban
areas situated in between the oil shale industry source and the nine
sinks, with landcover dominated by scrubland, forestry, and bare
rock (Fig. 1).

Uncertainty complicates the relationship between the amount
of CO2 being managed and the infrastructure costs. For exam-
ple, total costs (Fig. 7) for targets greater than 20 MtCO2/yr have
transport and storage costs that vary by more than 100%. For
the 55 MtCO2/yr scenario, this translates into a range of $0.5 to
$1.2/tCO2. For representative projects with higher transport (e.g.,
areas with higher populations and less federal land) and storage
costs (e.g., sinks with less favorable geology), costs could range
between $5 and $10/tCO2 (e.g., Middleton et al., 2012). At these
values, sink uncertainty could significantly impact the likelihood
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Fig. 6. Aggregate overview of 100 SimCCS runs for the 70 MtCO2/yr carbon man-
agement scenario. The width and height of each sink–cylinder represents average
CO2 capacity and cost respectively. The green sectors depict the proportion of times,
out  of 100 runs, that each sink is selected. The arc colors represent the frequency
that each arc is selected by SimCCS, ranging from yellow (selected just once in 100
runs) through to red (selected 82 times). Arc width is proportional to the aver-
age  pipeline capacity when that arc is selected—the smallest width represents a 12′′

pipeline (2.35 MtCO2/yr capacity) and the largest a 42′′ pipeline (83.95 MtCO2/yr).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web  version of the article.)

of how, or even whether, a CCS project is implemented. The Sim-
CCS pipeline modeling in this study is exposed only to uncertainty
in storage capacity and cost; the pipeline costs vary only in order
for the model to take advantage of cheaper sinks. As a result, the

range of pipeline costs (Fig. 7c) is limited and the variability in total
costs is therefore driven by the storage costs (Fig. 7b). As the car-
bon management scenarios capture more CO2, the network length
predictably increases. In addition, the variability in network lengths
also increases, though without affecting the transport costs beyond
30 MtCO2/yr. The cost impact is minimal because the SimCCS model
can fully utilize the pipeline network whether it requires longer-
but-smaller pipelines or shorter-but-larger pipelines to transport
the CO2 between the source and sinks.

5. Discussion

Geologic uncertainty has a significant impact on the spatial
deployment of CCS infrastructure. The variation in CO2 transport
and storage costs alone exposes utilities to risks that they must
minimize, risks that could be the make-or-break of CCS on a mean-
ingful scale. Capture technologies dominate CCS in terms of cost,
though it is likely that these costs will continually decrease with
new technology while transport and storage costs remain steady
(Stauffer et al., 2011a).  As a result, geologic uncertainty will play
an increasing role in CCS development in the next decade or two.
There is also much less flexibility for optimizing capture deci-
sions, and therefore reducing costs, within a comprehensive CCS
network. Industrial sources are immovable, and therefore costs
cannot be reduced through spatial optimization of infrastructure.
Further, capture technology decisions (e.g., oxyfuel retrofit versus
post-combustion capture) are largely independent of the remain-
der of the CCS infrastructure network, and therefore it is difficult
to uncover cost savings through infrastructure integration. Conse-
quently, system-wide cost savings and risk reduction may  be driven
in large part by uncertainty in the geologic reservoirs.

Thorough site characterization can serve to minimize epistemic
uncertainty and can support more robust predictions of reser-
voir capacity and injection behavior during the lifetime of the
site (NETL, 2010b). The level of investment in site characterization
activities may  vary from site to site depending on the complex-
ity of the geologic setting, proximity to population centers, or
regulatory demands. The operator of a network of CO2 sources

Fig. 7. Cost and network variability for 5–70 MtCO2/yr scenarios. Each solid line indicates the mean solution costs/network length, and the areas represent the range
(min/max) values for the 100 SimCCS runs.

Modified from Keating et al. (2011b).
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and sinks may  choose to minimize site characterization costs and
assume greater risk of unexpected performance at a particular sink
if there is flexibility for reconfiguring the CCS infrastructure (e.g.
pipelines). Reduced site characterization costs may  result in higher
project costs elsewhere, such as enhanced monitoring, verifica-
tion, and accounting (MVA) to ameliorate uncertainty in leakage
risk. A potentially greater impact, however, is the effect of reser-
voir uncertainty on the overall performance of the CCS system over
its operating lifetime.

Geologic uncertainty has an impact beyond straightforward
costs. Knowledge about a carbon reservoir will increase as CO2
is injected and stored over a number of years and changes are
measured in storage capacity and injection costs. The evolving esti-
mates of cost and capacity might present significant challenges, as
well as opportunities, to the existing infrastructure. For example,
estimated reservoir capacities may  rise and/or injection costs may
fall as more is learned as the project progresses. If the CCS infras-
tructure network is flexible, such as incorporating excess pipeline
capacity, it may  be possible to divert more CO2 to such an underesti-
mated sink. Conversely, negative changes in reservoir performance
will detrimentally affect CCS operations. This could be a simple rise
in costs resulting from lower-than-expected permeability and the
need for additional injection wells. Or, more acutely, reduced reser-
voir capacity (e.g., due to low porosity) could leave CO2 stranded
at one or more sources, particularly if the pipeline network is close
to full utilization. In a carbon-constrained economy, this stranded
CO2 would incur a cost to emit or require purchase of additional CO2
permits. In the medium to long term, this outcome could be reme-
died through further infrastructure investment: constructing new
pipelines, expanding operations at existing reservoirs, and opening
up new sinks. Naturally, the modified CCS infrastructure network
(sources, pipelines, sinks) will cost more than originally anticipated
and perhaps not perform as effectively.

An understanding of how large-scale CO2-emitting industries,
such as major power utilities, can minimize their exposure to this
risk will be critical to the success of widespread CCS technology.
Accordingly, future research should focus on understanding the
sensitivity of CCS infrastructure to reservoir uncertainty. Here, we
have identified how geologic uncertainty affects the costs and spa-
tial deployment of CCS infrastructure. Specifically, we  have shown
that sink uncertainty alone produces widely diverging infrastruc-
ture solutions each time the SimCCS model is executed. Clearly, this
is an important effect and needs to be studied in greater detail if
CCS technology is going to be deployed at an industrial-scale. Two
lines of further research to the impact of geologic uncertainty are
evident. First, the impact of modifying existing CCS infrastructure
has to be quantified. For instance, how much extra CCS infrastruc-
ture investment (e.g., build additional pipelines, open more sinks,
drill new injection wells) has to be made to reroute CO2 stranded
at one or more sources? Similarly, it might even be cost effective
to open new storage reservoirs if an existing sink incurs unex-
pectedly high injection costs, even though it has suitable storage
capacity. Second, once it is possible to quantify impacts, research
should focus on designing CCS infrastructure that a priori is robust
to natural uncertainty. For example, a CCS infrastructure model
might build excess pipeline capacity or routes into the network in
areas that have low expected injection/storage costs but with high
uncertainty—that way the system is able to minimize costs as well
as respond to infrastructure changes. Likewise, more conservative
reservoir capacity estimates might guide a model to identify spa-
tially co-located groups of good reservoirs that can act as alternative
storage sites, as opposed to emphasizing an excellent-but-isolated
reservoir. In addition, such models should be able to incorporate
uncertainty on the source term, to design a CCS network that han-
dles CO2 produced by future sources that were not foreseen at
the beginning of the project. Several models already exist that can

deploy CCS infrastructure over time given known future CO2 emis-
sion scenarios (e.g., Klokk et al., 2010; Middleton et al., 2011b;
Morbee et al., 2010; van den Broek et al., 2010). These models could
be adapted to understand how infrastructure adapts in the future
to unforeseen events (e.g., reservoir filling faster than expected or
catastrophic failure) especially with high discount rates. Temporal
models could also incorporate the effect of a dynamic CO2 price for
enhanced oil recovery (EOR) over time (e.g., as the market for EOR
becomes saturated, the price of CO2 will drop precipitously).

This study has focused on two  main areas: (1) understand-
ing how uncertainty in geologic parameters (e.g., permeability,
porosity) effects reservoir capacity and cost calculations, and (2)
how variability in reservoir characterization leads to substantial
variability in the CO2 capture and storage infrastructure. Further
research is required to answer some specific, yet critical, questions.
For example, this oil shale study used a set of nine storage reservoirs
between 70 and 150 km west of the single CO2 emissions source.
This configuration of sources and sinks is a good test bed for iso-
lating the impact on transport and storage infrastructure, however,
other source–sink configurations are much less homogeneous (e.g.,
Middleton and Bielicki, 2009; Middleton et al., 2012) and perhaps
the impact of geologic certainty is somewhat different. Similarly,
with more complex source–sink arrangements, future research
could identify configurations of sources–pipelines–sinks that are
more robust to uncertainty through the CCS system. As a result,
commercial-scale CCS operators could minimize their investment
uncertainty. Future research could also focus attention on identi-
fying specific drivers of uncertainty—for instance, if the principal
sources of uncertainty (e.g., reservoir permeability, formation het-
erogeneity) that cause infrastructure variability could be identified,
then it will be possible to distinguish where uncertainty reduction
efforts should be targeted.

6. Conclusions

Cost and capacity uncertainty for geologic reservoirs is a crit-
ical consideration for design and construction of large-scale CCS
systems. Variation of reservoir permeability within typical ranges
can produce a factor-of-ten change in storage costs. Likewise,
uncertainty in other reservoir parameters that affect capacity and
injectivity (e.g., thickness and porosity) can produce similar cost
variation. Industry- or utility-scale CCS development will require
a balance between investments to characterize and reduce natural
uncertainty and to build flexibility and resilience into transporta-
tion networks. In this study, we  have shown that uncertainty in
geologic properties of storage reservoirs (permeability, thickness,
porosity) produces widely diverging CCS infrastructure designs
each time the SimCCS model is run. Consequently, industrial scale
CCS technology will require detailed analysis and modeling that
takes into account a large number of different scenarios.
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